Query & integrate data#

import lamindb as ln
import lnschema_bionty as lb

lb.settings.species = "human"
馃挕 loaded instance: testuser1/test-facs (lamindb 0.54.4)
ln.track()
馃挕 notebook imports: lamindb==0.54.4 lnschema_bionty==0.31.2
馃挕 Transform(id='wukchS8V976Uz8', name='Query & integrate data', short_name='facs2', version='0', type=notebook, updated_at=2023-10-01 16:44:48, created_by_id='DzTjkKse')
馃挕 Run(id='BoE9M7kk0ZBJidtGdqB7', run_at=2023-10-01 16:44:48, transform_id='wukchS8V976Uz8', created_by_id='DzTjkKse')

Inspect the CellMarker registry #

Inspect your aggregated cell marker registry as a DataFrame:

lb.CellMarker.filter().df().head()
name synonyms gene_symbol ncbi_gene_id uniprotkb_id species_id bionty_source_id updated_at created_by_id
id
0vAls2cmLKWq ICOS ICOS 29851 Q53QY6 uHJU 8RAX 2023-10-01 16:44:29 DzTjkKse
bspnQ0igku6c CD16 FCGR3A 2215 O75015 uHJU 8RAX 2023-10-01 16:44:29 DzTjkKse
50v4SaR2m5zQ CD25 IL2RA 3559 P01589 uHJU 8RAX 2023-10-01 16:44:29 DzTjkKse
HEK41hvaIazP Cd4 CD4 920 B4DT49 uHJU 8RAX 2023-10-01 16:44:29 DzTjkKse
k0zGbSgZEX3q HLADR HLA鈥怐R|HLA-DR|HLA DR None None None uHJU 8RAX 2023-10-01 16:44:29 DzTjkKse

Search for a marker (synonyms aware):

lb.CellMarker.search("PD-1").head(2)
id synonyms __ratio__
name
PD1 2VeZenLi2dj5 PID1|PD-1|PD 1 100.0
Cd14 roEbL8zuLC5k 50.0

Look up markers with auto-complete:

markers = lb.CellMarker.lookup()

markers.cd14
CellMarker(id='roEbL8zuLC5k', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2023-10-01 16:44:29, species_id='uHJU', bionty_source_id='8RAX', created_by_id='DzTjkKse')

Query files by markers #

Query panels and datasets based on markers, e.g., which datasets have 'CD14' in the flow panel:

panels_with_cd14 = ln.FeatureSet.filter(cell_markers=markers.cd14).all()
ln.File.filter(feature_sets__in=panels_with_cd14).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
8zlLWz5kwz4eVoYxBRwf mUeGHHxE None .h5ad AnnData Alpert19 None 33369696 Piw2n0vdnoNoAV7ZxgsW-g md5 OWuTtS4SAponz8 TJweM0VKGkTQHyy8CZci None 2023-10-01 16:44:34 DzTjkKse
rYTrXas2KdzpqLDUILvH mUeGHHxE None .h5ad AnnData Flow cytometry file 2 None 6837528 t6plg-pXZMxqmQN9naNeuw md5 SmQmhrhigFPLz8 qh5Vw8DryjLToUWD3lqo None 2023-10-01 16:44:42 DzTjkKse

Access registries:

features = ln.Feature.lookup()

Find shared cell markers between two files:

files = ln.File.filter(feature_sets__in=panels_with_cd14).list()
file1, file2 = files[0], files[1]
shared_markers = file1.features["var"] & file2.features["var"]
shared_markers.list("name")
['Cd4', 'CD3', 'CD57', 'Cd14', 'CD8', 'CD127', 'CD27', 'Cd19', 'CD28', 'Ccr7']